Feature Selection Information Gain pada Klasifikasi Pasien Penyakit Jantung (Heart Disease)

Authors

  • Siska Narulita Universitas Nasional Karangturi
  • Priyo Nugroho Adi Institut Teknologi dan Bisnis Semarang

DOI:

https://doi.org/10.53416/jurmik.v4i1.240

Abstract

Heart disease, also known as cardiovascular disease, is a condition where there is a blockage or narrowing of blood vessels that can lead to heart attack, chest pain, or stroke. It needs appropriate medical treatment because this disease can be the cause of death. Data mining methods are helpful in diagnosing and treating heart disease. Data mining methods can play a major role in the process of improving the quality of care for heart disease patients, providing valuable information for informed decision-making regarding prevention and treatment. The data analysis process uses classification algorithms, namely Decision Tree (C4.5), Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) combined with feature selection information gain method. The results show that data mining methods are very useful in diagnosing and treating heart disease. The highest percentage of correct classifications for both models before and after the implementation of feature selection information gain was obtained by the RF algorithm, which amounted to 95.71%. However, the implementation of the feature selection information gain method in this study did not contribute significantly to improving the classification quality of each algorithm used.

References

Lazulfa I, F. RAJ. Analisis Faktor Prediksi Diagnosis Tingkat Keparahan Penyakit Jantung (Heart Disease) Menggunakan Metode Stepwise Binary Logistic Regression. Inov J Ilm Inov Teknol Inf. 2017;2(1):1–8.

Kementerian Kesehatan Republik Indonesia. Pathfinder: Kardiovaskular [Internet]. 30 Januari 2023. 2023. Available from: https://perpustakaan.kemkes.go.id.

Kementrian Kesehatan Republik Indonesia. Mengenal Penyakit Tidak Menular dan Pencegahannya [Internet]. 25 Agustus 2022. 2022. Available from: https://ayosehat.kemkes.go.id.

Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular. Buku Pedoman Manajemen Penyakit Tidak Menular [Internet]. Jakarta: Kementerian Kesehatan Republik Indonesia; 2019. Available from: https://p2ptm.kemkes.go.id.

Widiastuti E, Saragih B, Fatchanuraliyah, Usman IKS, Hamzah A, Junita TV, et al. Lebih Awal Lebih Baik: Pencegahan dan Pengendalian Penyakit Tidak Menular (PTM) [Internet]. Jakarta: Kementerian Kesehatan Republik Indonesia; 2022. Available from: https://p2p.kemkes.go.id.

Haryono, Rubaya AK, Husein A. Pengantar Epidemiologi. Yogyakarta: Poltekkes Jogja Press; 2021.

Muslim MA, Prasetiyo B, Mawarni ELH, Herowati AJ, Mirqotussa’adah, Rukmana SH, et al. Data Mining Algoritma C4.5. Semarang; 2019.

Zdrodowska M, Kasperczuk A, Dardzińska-Głębocka A. Selected Feature Selection Methods for Classifying Patients with Hepatitis C. In: 27th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2023). Poland: Procedia Computer Science; 2023. p. 3710–7.

Rahayu PW, Sudipa IGI, Suryani, Surachman A, Ridwan A, Darmawiguna IGM, et al. Buku Ajar Data Mining. Bandung: PT Sonpedia Publishing Indonesia; 2024.

Tholib A. Implementasi Algoritma Machine Learning Berbasis Web dengan Framework Streamlit. Probolinggo: Pustaka Nurja; 2023.

Downloads

Published

2024-06-14

How to Cite

Siska Narulita, & Priyo Nugroho Adi. (2024). Feature Selection Information Gain pada Klasifikasi Pasien Penyakit Jantung (Heart Disease). Jurnal Rekam Medis & Manajemen Infomasi Kesehatan, 4(1), 13–19. https://doi.org/10.53416/jurmik.v4i1.240

Issue

Section

Articles