Metode dan Algoritma Dalam Data Clustering: Systematic Literature Review

Authors

  • Dian Restu Adji Universitas Dian Nuswantoro
  • Erba Lutfina Universitas Nasional Karangturi
  • Bhekti Eka Ferdianto Universitas Dian Nuswantoro
  • Eva Prashanti Universitas Dian Nuswantoro
  • Kenza Amelia Putri Anwarri Universitas Dian Nuswantoro
  • Syahrul Rizqi Prayogo Universitas Dian Nuswantoro

DOI:

https://doi.org/10.53416/stmj.v5i1.326

Keywords:

systematic literature review, Data Mining, data clustering

Abstract

This study is Systematic Literature Review (SLR) of 34 journals related to data grouping techniques (clustering). The main objective of the study is to investigate the use of clustering methods in various research fields. In order to achieve this goal, this study answers five main research questions. First, this study analyzes research fields where clustering methods are often used in data mining applications. Second, this study identifies the most frequently used clustering methods based on data from the journals that have been collected. Third, this study determines the clustering method that provides the most optimal number of groups (clustering) based on the analysis of these journals. Fourth, this study identifies the types of data sets that are most often used in the context of clustering. Finally, this study looks at the distribution of the publication years of these journals to present a time frame of the development of clustering research. The results of this study provide in-depth insight into the trend of the use of clustering methods in various research contexts, provide information on the most commonly used methods, identify methods that provide optimal results, describe the dominant types of data sets, and provide a chronological perspective on the development of clustering research. These findings can provide valuable guidance for researchers interested in applying or developing clustering methods in specific fields.

Author Biography

Erba Lutfina, Universitas Nasional Karangturi

 

 

References

Abidin, N. A. S. Z., Avila, R. D., Hermatyar, A., & Rismayani, R. (2022). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Daerah Produksi Kakao. Jurnal Teknik Informatika Dan Sistem Informasi, 8(2), 383–391. https://doi.org/10.28932/jutisi.v8i2.4897

Ainur Rahman, & Suroyo, H. (2021). Analisis Data Produk Elektronik Di E-Commerce Dengan Metode Algoritma K-Means Menggunakan Python. Journal of Advances in Information and Industrial Technology, 3(2), 11–18. https://doi.org/10.52435/jaiit.v3i2.158

Andini, F., Zilfitri, D., Filki, Y., & Ridho, M. (2022). Algoritma K-Means Clustering dalam Optimalisasi Komposisi Pakan Ternak Ayam Petelur. Jurnal Sistim Informasi Dan Teknologi, 5, 44–48. https://doi.org/10.37034/jsisfotek.v5i2.168

Andra, D., & Baizal, A. B. (2022). E-commerce Recommender System Using PCA and K-Means Clustering. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(1), 57–63. https://doi.org/10.29207/resti.v6i1.3782

Dewa, F. A., & Jatipaningrum, M. T. (2019). SEGMENTASI E-COMMERCE DENGAN CLUSTER K-MEANS DAN FUZZY C-MEANS (Studi Kasus: Media Sosial di Indonesia yang diunduh di Play Store). Jurnal Statistika Industri Dan Komputasi, 4(1), 53–67.

Evanita, F. M., Cholissodin, I., & ... (2021). Pengelompokan Toko E-commerce Shopee berdasarkan Reputasi Toko menggunakan Metode Clustering K-Medoids. … Dan Ilmu Komputer E-ISSN, 5(3), 1230–1236. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8784/4029

Isnarwaty, D. P., & Irhamah, I. (2020). Text Clustering pada Akun TWITTER Layanan Ekspedisi JNE, J&T, dan Pos Indonesia Menggunakan Metode Density-Based Spatial Clustering of Applications with Noise (DBSCAN) dan K-Means. Jurnal Sains Dan Seni ITS, 8(2), 2–9. https://doi.org/10.12962/j23373520.v8i2.49094

Lutfina, E., Setiawan, R. O. C., Nugroho, A., & Abdillah, M. Z. (2023). PERANCANGAN APLIKASI PEMBELAJARAN DENGAN KONSEP GAMIFIKASI Systematic Literature Review. METHOMIKA Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 7(1), 78–87. https://doi.org/10.46880/jmika.vol7no1.pp78-87

Lutfina, E., Yuanita, S. P., Dimentieva, I., Pribadi, A. N., Syahidan, M. S., Safa’at, M. A. F. A., & Loekito, J. (2024). Identifikasi Teknik Data Mining Metode Asosiasi: Systematic Literature Review. Science Technology and Management Journal, 4(2), 57–61. https://doi.org/10.53416/stmj.v4i2.257

Pamungkas, M. D., & Februariyanti, H. (2022). Penerapan Algoritma K-Means Clustering Untuk Mengelompokan Data Review Barang Pada E-Commerce Lazada. SemanTIK, 8(2), 99. https://doi.org/10.55679/semantik.v8i2.29058

Prasetyo, S. S., Mustafid, M., & Hakim, A. R. (2020). Penerapan Fuzzy C-Means Kluster Untuk Segmentasi Pelanggan E-Commerce Dengan Metode Recency Frequency Monetary (Rfm). Jurnal Gaussian, 9(4), 421–433. https://doi.org/10.14710/j.gauss.v9i4.29445

Reynaldo, Y., Triayudi, A., & Ningsih, S. (2022). Analisis Faktor yang Mempengaruhi Gamers PC dan Konsol Beralih ke Game Mobile menggunakan Metode K-Means Clustering. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(1), 42–48. https://doi.org/10.35870/jtik.v6i1.383

Ritonga, A. S., & Muhandhis, I. (2022). Clustering Data Tweet E-Commerce Menggunakan Metode K-Means (Studi Kasus Akun Twitter Blibli Indonesia). Smatika Jurnal, 12(01), 75–84. https://doi.org/10.32664/smatika.v12i01.665

Rout, R., Parida, P., Alotaibi, Y., Alghamdi, S., & Khalaf, O. I. (2021). Skin lesion extraction using multiscale morphological local variance reconstruction based watershed transform and fast fuzzy c-means clustering. Symmetry, 13(11). https://doi.org/10.3390/sym13112085

Sarbaini, S., Saputri, W., Nazaruddin, & Muttakin, F. (2022). Cluster Analysis Menggunakan Algoritma Fuzzy K-Means Untuk Tingkat Pengangguran Di Provinsi Riau. Jurnal Teknologi Dan Manajemen Industri Terapan, 1(2), 78–84. https://doi.org/10.55826/tmit.v1iii.30

Siagian, R., Pahala Sirait, P. S., & Halima, A. (2021). E-Commerce Customer Segmentation Using K-Means Algorithm and Length, Recency, Frequency, Monetary Model. Journal of Informatics and Telecommunication Engineering, 5(1), 21–30. https://doi.org/10.31289/jite.v5i1.5182

Sinta Saputri, D., Maha Putra, G., Fitri Larasati, M., Studi Sitem Informasi, P., & Tinggi Manajemen Informatika dan Komputer Royal Kisaran, S. (2022). Implementation of the K-Means Clustering Algorithm for the Covid-19 Vaccinated Village in the Ujung Padang Sub-District. Jurnal Teknik Informatika (JUTIF), 3(2), 261–267. https://doi.org/10.20884/1.jutif.2022.3.2.165

Syukron Nawawi, M., Sembiring, F., & Erfina, A. (2021). Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris. Program Studi Teknik Informatika-Universitas Pgri Madiun, 789–797.

Ulinnuha, N. (2020). Provincial Clustering in Indonesia Based on Plantation Production Using Fuzzy C-Means. ITSMART: Jurnal Ilmiah Teknologi Dan Informasi, 9(1), 8–12.

Wicaksono, A., Bachtiar, F. A., & Setiawan, N. Y. (2021). Segmentasi Pelanggan Menggunakan Fuzzy C-Means Clustering berdasarkan RFM Model pada E-Commerce (Studi Kasus: E-Commerce XYZ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1351–1360.

Yufanka, K. F., Lutfina, E., Nugroho, A., & Abdillah, M. Z. (2023). Science, Technology and Management Journal SYSTEMATIC LITERATURE REVIEW: PERANCANGAN SISTEM INFORMASI PEMESANAN WEDDING ORGANIZER BERBASIS WEB Info Artikel. Science, Technology and Management Journal, 3(1), 182–192. http://journal.unkartur.ac.id/index.php/stmj

Downloads

Published

2025-01-31